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ABSTRACT: Acetone, butanol, and ethanol are produced in
an acetobutylic fermentation, butanol being the main interest
product because of its superior properties making it a feasible
substitute for fuels coming from fossil sources. In this work we
have simulated and optimized under a rigorous scheme an
integrated process to produce acetone, butanol, and ethanol
from lignocellulosic biomass. Since ABE fermentation presents
several hurdles such as low concentration broths or inhibitory
effects during fermentation, here is proposed a hybrid
simultaneous system of saccharification−fermentation−separa-
tion in which inhibition products during both fermentation and
enzymatic hydrolysis are limited. A liquid−liquid extraction
step is selected as the recovery technique. The reactor was modeled and simulated using Matlab software coupled with Aspen
Plus which simulated the separation step. The entire optimization was developed taking into consideration several objective
targets such as the total annual cost and some bioindexes involved in fermentation such as productivity, yield, and butanol
concentration. Our results allowed us to find a feasible operative zone where all our objective targets were not compromised
when the goal was the improvement of the process to produce biobutanol.

1. INTRODUCTION

During the acetobutylic fermentation process acetone, butanol,
and ethanol (ABE) are produced, butanol being the main
interest product. In the early twentieth century began the
development of the platform for the ABE fermentation in
response to a high demand in the production of acetone. This
led, in 1916, to the use of the Weizmann process (by means of
the microorganism Clostridium acetobutylicum) in the first
industrial-scale ABE fermentations. A quick progress in
petrochemical production during the second half of the
twentieth century meant a decline in the use of ABE
fermentation for obtaining butanol. However, the problems
currently afflicting the energy sector (i.e., depletion of natural
resources, climate change, environmental pollution, etc.) have
led to a reappraisal of ABE fermentation for sustainable
production of butanol, considered as a possible biofuel and
increasing its demand. One of the main factors impacting its
performance and total cost of production is the selection of the
substrate to ferment. Since the strains of Clostridia are able to
use a wide range of carbon sources this flexibility makes them
excellent options for integration into biofuels production
according to the cost-benefit of substrates which are the most

suitable locally).1 Traditionally several species of the Clostri-
dium genus are involved in this fermentation process such as
Clostridium acetobutylicum, C. beijerinckii, C. saccharobutylicum,
C. saccharoperbutylicum, and C saccharoperbutylacetonicum.2,3

These are strict anaerobic Gram-negative bacteria whose
metabolic pathways carry out the ABE fermentation on two
distinctly divided phases: acidogenesis (sugars are converted to
acetic and butyric acids accompanied by a decrease in culture
pH), and solventogenesis (sugars and some of the acids are
metabolized into acetone, butanol, and ethanol, accompanied
by an increase in culture pH).3−6 Presently, the use of strains of
C. saccharoperbutylacetonicum are preferred over other species
due mainly for two characteristics: first, a higher yield and
better butanol/acetone ratio (>4:1) in the final solvents mix;8

and second, as mentioned above, its ability to ferment a great
variety of substrates that could be enriched in glucose,
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saccharose, lactose, xylose, starch, glycerol, and many other
sugars.7

A boost to the production of biobutanol would consist of two
converging strategies: (1) A biological approach, engineering
Clostridias’ metabolic pathways for butanol hyper-production8

and (2) the theoretical optimization and modeling of more
efficient hybrid production-separation processes, such as that
described in the present study.
This separation stage allows the resolution of two problems

associated with the ABE fermentation. The first one is to
withdraw the interest components in a continuous process
which represents a great benefit such as to maintain the
concentration of acetone, butanol, and ethanol in such levels to
avoid any damage to microorganism. The second one is to
avoid high water concentration which consequently prevents
azeotropic formation. The ABE metabolic pathway in the
Clostridia suffers substrate inhibition by glucose and xylose
concentrations, and product inhibition by butanol concen-
tration,7 both of which represent big obstacles in strain
growing, so that several restrictions must be faced including low
yields during fermentation. Moreover, the correct selection of
raw materials are also an important challenge. Considering a
first generation raw material with high sugar concentration such
as corn as a substrate would represent in practice 78% of the
total production cost.2 That is why lignocellulosic biomass
seems to be a wise selection as raw material for fermentation
considering its economic and environmental advantages in
comparison with first generation raw materials.3 Moreover,
lignocellulosic biomass is currently considered a widely
promising substrate during fermentation ABE by several
authors.9−14 Lignocellulosic biomass is composed mainly of
cellulose, hemicellulose, and lignin. Before lignocellulosic
biomass can be used, a biocatalytic pretreatment is necessary
to reduce hemicellulose to xylose and decrease the crystallinity
in cellulose.15 After pretreatment, the biomass must be either
chemically or enzymatically hydrolyzed.16

Enzymatic hydrolysis may offer several advantages over both
physical and chemical mechanisms such as low byproducts, less
energy requirements, and easier operative conditions. However,
enzymatic hydrolysis represents also a huge inhibition by
glucose and xylose concentrations.15 One alternative which
decreases inhibition is an integrated fermentation−saccharifi-
cation (SSF) reactor; this option is more suitable since
monosaccharides are simultaneously consumed during fermen-
tation.15

During ABE fermentation using lignocellulosic biomass as
raw material, these two integrated processes (SSF) may show
additional advantages reducing the inhibitory effect of the final
products in both the hydrolysis and fermentation processes.
The SSF process shows an improvement generating better
yields and minimizing energy requirements. Moreover, the
main advantage of SSF is that both the bacteria and enzymatic
complex involved in those processes reduce the presence of
sugar inside the reactor. Consequently a better performance is
observed and the saccharification rate is improved.
The inhibition caused by high butanol concentration in the

fermentation process is also a big hurdle in this process; that is,
when a concentration of butanol near 15 g L−1 is reached the
fermentation process is completely inhibited. In this scenario,
the low yields, the performance in reactors, and the high energy
requirements during the entire process represent an obstacle
that must be overcome. To improve the performance, several
options have been currently proposed, one of them is the

integration of both reaction and recovery processes. Using
external units stimulates the purification because a wide range
of temperatures can be used in the selective removal of
components from the fermentation broth. However, when
temperature is increased a higher number of equipment is
required since either a cellular immobilizer or biomass recycler
must be used. Considering the separation unit, diverse options
have been proposed in order to remove all fermentation
products. Yang et al.17 proposed adsorption as a recovery
technique, showing promissory results at the laboratory scale.
Qureshi and Maddox18 proposed liquid−liquid extraction as a
good alternative to purify the ABE mixture. Moreover,
pervaporation19 and gas stripping20 are also proposed as
alternatives in order to remove and purify mainly the butanol
produced in ABE fermentation. Despite all those approaches
there is not a definitive separation technique: each of them have
their advantages and disadvantages,21 however liquid−liquid
extraction has been reported as the recovery technique which
exhibits the most potential to be used in butanol
purification.22,23

On the other hand, since optimization techniques represent a
very useful tool which helps improve several processes, its
application in the fermentation process is mandatory. Sharma et
al.24 analyzed, under a multiobjective optimization approach, an
integrated reactor with gas stripping and pervaporation to
produce biobutanol having as objective targets the productivity,
performance, yields, and sugars conversion. After their analysis
they obtained an improvement using integrated reactors during
fermentation, emphasizing an increase of the productivity and
conversion of the integrated reactor. Further, Mariano et al.25

optimized an ABE fermentation integrated with a flash unit and
recycling biomass using genetic algorithms having as the
objective function to maximize butanol production for an
expected substrate conversion. Rohani et al.26 performed a
multiobjective optimization of a bioreactor integrated with
pervaporation and gas stripping, highlighting its productivity
and sugar conversion. However, note that a rigorous
optimization applied to a hybrid process of saccharification−
fermentation−separation (SFS) has been little studied.
Furthermore, there is a similar situation in the study of the
role that all variables included in this kind of process have.
Under this scenario, the aim of this study was to model,

simulate, and optimize a continuous fermentation process. This
process consists of two distinct sections: reaction and
separation. For the reaction section we considered an
integrated process in which both fermentation and saccha-
rification are carried out together; in the separation section we
selected liquid−liquid extraction as the recovery technique to
purify the fermentation products. In this manner, this work is
proposed as an intensified process since both saccharification
and fermentation are performed in the same process unit. This
intensification represents economic advantages and diminish-
ment in inhibitory effects. Note this work is only focused in the
reaction step which is the initial stage for all ABE production
processes. However, this approach is quite complicated to solve
and optimize since we are considering several variables involved
in the optimization process, furthermore the fermentor model
(showed as Supporting Information) is relatively complex and
considers all compounds involved in ABE fermentation and its
operative conditions. As results we obtain an effluent with the
main ABE compounds coming from the fermenter under
certain operative conditions obtained by means of a rigorous
optimization process. This effluent may be further separated
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considering several alternatives already reported by several
authors.27,28

The modeling of fermentation, saccharification, and extrac-
tion was developed in Matlab, the solvent recovery unit is
modeled using Aspen Plus; and the optimization process is
carried out using a stochastic optimization algorithm written in
visual basic, both programs linked to each other.
The Differential Evolution with Tabu List has shown to be

capable of solving complex nonlinear problems and potentially
nonconvex. Further, through a reasonable computational time
it is totally feasible to find solutions quite near the optimal
solution.29 By means of this optimization algorithm it was
possible to obtain Pareto fronts of the integrated reactor
through two proposed methods: first a biobjective optimization
was performed to find the feasible operation zone, and finally a
multiobjective optimization was performed to verify the
influence and improvement by including several objective
functions at the same time.

2. PROCESS DESCRIPTION

Currently, biobutanol is produced by fermentation using
clostridium species. A simplified flowsheet is observed in
Figure 1. We took as process parameters a continuous feed with
constant sugar concentration. A volume of 1000 m3 is
considered. To control the fermenter volume, a purge is
included in our model, having as a target to remove the
nonreactant compounds and also avoiding inhibition concen-
trations inside the reactor. Also proposed is a feed flow with
cellulose/hemicellulose/lignin which is varied according to the
raw material until an optimal feed flow is found.
The presence of a mixed cell population (acidogenic cells,

solventogenic cells, and spores) characterized by mutual
interferences and the butanol production by means of one
element of the cell population makes the design of a continuous
reactor a complex task.
The fermentation−saccharification process has been mod-

eled in Matlab taking into consideration a complex system
which includes a rigorous mathematical model which describes
adequately all metabolic reactions of the ABE pathway for C.
saccharoperbutylacetonicum. Further, considering pH changes
and the distinctive temperature profiles of this strain, a wide
description of the model was described previously by Shinto et
al.30 (see Supporting Information). Starting from their model
allowed us to predict a dynamic profile taking in account all
intermediary products in the fermentation as well as both
substrate and product inhibitory effects for Clostridium strains.
The inhibitory effect modeled by Shinto et al.30 described the
effect of butanol at low−medium butanol concentrations

considering those current Clostridium strains, just like those
obtained in this work. So, by means of this model a
conventional ABE fermentation might be represented with
relatively good accurracy.31 The model was developed for two
different substrates, either glucose or xylose, at the beginning of
the metabolic route. The kinetic model involved in the
saccharification process is taken from the study of Kadam et
al.32 (see Supporting Information). This previous work allowed
us to account for the effect of both substrate and product
inhibition. Also a competitive inhibition by xylose and enzyme
adsorption is considered.
To calculate the volume of the reactor, all raw materials and

reactions are included. This work considers the volume
occupied by solids which produce areas without reaction.
However, those solid materials must be eventually purged. The
necessary purged flow (FP) is obtained by calculating the
difference between the initial volume and final increased
volume due to solids, multiplied by a proportionality constant
according to the operative ranges32 which monitors the total
volume (VT). The overall balance of the integrated reactor is
described as follows:

= + − +Ci
t

R V Fx F x F x
d
d i F i p Pi L Li1 1 (1)

where Ci is the concentration of each component: butanol,
ethanol, acetone, butyric acid, acetic acid, glucose, and xylose.
The simulation of a simultaneous saccharification−fermenta-

tion−separation (SFSS-L) is shown in Figure 2. This process is

carried out in a pseudostable state (the reactor in transitory
state and the liquid−liquid extraction unit in steady state). Also,
2-ethyl-1-hexanol was selected as the extractant agent because
of its high partition coefficient, high selectivity, low cost, and
appropriate medium boiling point.34,28

Figure 1. Simplified process flowsheet of biobutanol plant.

Figure 2. Schematic diagram of a continuous fermentation process
coupled with a liquid−liquid separation unit and a column to recover
extractant.
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The compositions in liquid−liquid equilibrium inside the
decanter are calculated as follow:

α α=x xi i i iI I II II (2)

On the other hand, the flow reactor FL (see Figure 2) is the
calculated aqueous phase in the decanter; this flow in aqueous
phase F2 comes from reactor and might be calculated fixing a
recycle rate on fermenter rF of 0.95 according to

=r F F/ pF 2 (3)

As an initial operative variable a cellulose feed of 46 g L−1,
avoiding substrate inhibition, is used. The reactor starts as a
batch process and after 20 h the feed flow rate and purge flow
starts; also the extractant agent is fed in the liquid−liquid
extraction column.
The total fermentation time is simulated as 500 h; however,

this time could be longer trying to avoid the loss of all material
before steady state is reached.

3. OPTIMIZATION PROBLEM FORMULATION
The modeling and optimization processes offer several
advantages when some economic index is evaluated since
they allow us to identify many operative conditions for which
economical improvements are reached. An optimization
process can be used to find optimal operative conditions
during a fermentation process integrated with a separation
section. However, being that the ABE fermentation involves a
complex set of equations highly nonlinear with degrees of
freedom, using optimization algorithms may help to identify the
optimal condition in this process.
First an optimization process considering only two objective

function was performed. This biobjective optimization was
performed to know the range of all operation variables and also
know the impact of each target when it is evaluated against the
total annual cost (TAC), which we considered as the most
important target. Furthermore, this biobjective optimization
will let us know certain zones where it is possible to operate the
reactor without compromising any target.
Once both range variable and operation zone were known, a

multiobjective optimization was performed facing all objective
functions. This kind of optimization gave us a wider point of
view since all bioindexes such as productivity, butanol
concentration, and butanol yield are in conflict with the total
annual cost. Also, this optimization process lets us know the
best operative condition at fermenter without compromise of
any objective function. All objective function are described
below.
To optimize the TAC, the optimization problem might be

written as follows:

=

⃗ ≥ ⃗

f D E E C C C

y x

min(TAC) ( , , , , , )

s.t. k k

1 N xt c x l

(4)

where D is the dilution rate (h−1), EN is the amount of enzyme
added ($/kg biomass), and Ext is the amount of extractant in
feed stream.
The TAC has been calculated taking as base the method-

ology presented by Guthrie35,36 as follows:

=
+( )

( )
TAC

operating cos t

annual ABE production

r
$

year
total investment ($)

(year)

Kg
year (5)

Where r is the time of return of the investment. We considered
3 years.33

The total investment of process is given by

= + + +C C C Ctotal investment R T IN IE (6)

where CR, CT, CIN, and CIE are the reactor cost, column cost,
condenser cost, and initial investment, respectively. All cost
were calculated as a function of the installation cost.
The annualized operative cost is calculated as follows:

= + + + + +C C C C C Coperating cos t E V AE S ENZ Ex
(7)

where Ce, Cv, Cae, Cs, Cenz, and Cex represent the electricity cost,
steam cost, cooling water cost, substrate cost, enzyme cost, and
cost due to extractant lost, respectively.
As has been told, we considered a stirred reactor of 1000 m3.

Only 0.7 of total volume is full in order to prevent high volume
changes during a hypothetical control of the process. Despite
the TAC being the main economic index, we used other targets
simultaneously during the optimization process. The second
objective function is written as follow:

=

⃗ ≥ ⃗

f D E E C C C

y x

max(productivity) ( , , , , , )

s.t.

N

k k

2 xt c x l

(8)

The main reason for maximizing the productivity is to reduce
the size of the reactor and consequently the production cost.37

The productivity is defined as follows:

= +

⃗ ≥ ⃗

P
V

C MW F C MW F

y x

productivity ( )
1

( ( ))

s.t. k k

B B,3 B 3 B,p B p

(9)

Moreover, the yield evaluation let us know the amount of
substrate converted in the interest product. Consequently it is
possible to know the substrate cost during fermentation.
Maximizing the yield is equivalent to minimizing biobutanol
production. Further, maximizing the yield produces a
minimization of biomass accumulated in the fermenter, which
is totally desirable since the elimination of waste material is a
serious problem.36

To maximize yield inside the fermenter, the third objective
function is described as follow:

=

⃗ ≥ ⃗

f D E E C C C

y x

max(yield) ( , , , , , )

s.t. k k

3 N xt c x l

(10)

where yield is defined in next equation:

=
+
−

⃗ ≥ ⃗

Y
C MW F C MW F

C FMW C F MW

y x

( )

( )

s.t. k k

B
B,3 B 3 B,p B p

S,1 1 S S,p p B

(11)

Currently the main hurdle in the fermentation process is the
low concentration in products. The main production cost is
highly influenced by product concentration. Further, since the
separation technique is also not efficient, maximizing
biobutanol concentration is equivalent to minimize operative
costs (reboiler heat duty and cooling water) in purification
units such as liquid−liquid extraction column or distillation
columns. In this manner our fourth and last objective function
is described as follows:
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=

⃗ ≥ ⃗

f D E E C C C

y x

max(butan ol concentration) ( , , , , , )

s.t. k k

4 N xt c x l

(12)

where butanol concentration is defined in next equation:

=
+

⃗ ≥ ⃗

C MW F C MW F

F

y x

C
( )

s.t. k k

B
B,3 B 3 B,p B p

1

(13)

With all those objective functions a complex scenario could be
observed since almost all our objective functions are in conflict
to each other; under this behavior a multiobjective function
would let us know several steady states in the fermentation
process trying to reach high productivities, yields, and
concentrations with as small as possible total annual costs. All
objective functions are subject to several decision variables
observed in Table 6.

4. MULTIOBJECTIVE OPTIMIZATION STRATEGY
To optimize the bioreactor to produce butanol, we used a
stochastic optimization method, the Differential Evolution with
Tabu List (DETL).29 Stochastic optimization algorithms have
been proven in several works to be able to solve highly
nonlinear problems and potentially nonconvex problems,
similar to variables involved in this work (shown38,28 in Table
1). Those methods even have been tested in MINLP problems
involved in other works.39−41

DETL has its basis in natural selection theory, similar to
genetic algorithms. In the DETL method it is possible to find
some parameter such as initial population, size of Tabu List,
crossover, and mutation. Srinivas and Rangaiah42 showed that
the use of some concepts of the metaheuristic tabu could
improve the performance of the DE algorithm. In particular, the
Tabu List (TL) can be used to avoid the revisit of search space
by keeping record of recently visited points, which can avoid
unnecessary function evaluations.
The implementation of this optimization algorithm is

performed using a hybrid platform considering Microsoft
Excel where the algorithm is programmed, Matlab where the
bioreactor is modeled, and Aspen Plus where the separation
unit is simulated. The vector of decision variables (i.e., the
design variables) are sent from Microsoft Excel to Matlab using
DDE (Dynamic Data Exchange) in which the bioreactor is
simulated and gives the inlet streams to the separation unit. In
Microsoft Excel, these values are attributed to the process
variables that Matlab needs. After the simulation, Matlab and
Aspen Plus return to Microsoft Excel the resulting vector.

Finally, Microsoft Excel analyzes the values of the objective
function and proposes new values of decision variables
according to the stochastic optimization method used. To
optimize our cases of study, we have used the following
parameters for the DETL method: 120 individuals, 500
generations, a tabu list of 50% of total individuals, a tabu
radius of 1 × 10−8, and 0.85 and 0.5 for crossover and mutation
fractions, respectively. These parameters were obtained through
a tuning process via preliminary calculations. All the objective
functions are subject to a range of values and restrictions of the
decision variable described in Table 1. Those degrees of
freedom were selected because of their importance in the ABE
fermentation. Note that the variation in dilution rate directly
affects several indexes such as productivity and product
concentration; besides, the amount of enzyme determines the
available sugars in fermentation and directly impacts the
process cost, in the same manner that the amount of extract
directly impacts the process cost because further recovery is
necessary. Also the sugar and lignin concentrations fed to the
system must be correct.

5. RESULTS AND DISCUSSION
5.1. Preliminary Biobjective Optimization Results. As

mentioned in section 3, a biobjective optimization was initially
performed to determine both range variable values and zones
where it is feasible to operate the reactor without
compromising any target. The results from this biobjective
optimization process are presented in the Pareto fronts in
Figure 3a. Note that Figure 3a shows both objective functions
TAC and butanol concentration. When these two objective
function are evaluated it appears they are in conflict, in other
words, while butanol concentration grows the TAC increases
too. The lowest butanol concentrations are obtained by using
the lowest sugar concentrations and vice versa. However, note
that an increase in sugar concentration implies an increase in
the amount of enzyme, and consequently, the amount of
extractant agent increases as well as the TAC. Approximately
after 9.297 g L−1 the TAC value rises drastically. On the other
hand, with low concentration values such as 7.6 g L−1, the TAC
values obtained are near 0.268 $/kg-ABE.
A deeper analysis can be carried out observing the values in

Table 2. Basically, three areas in the Pareto front of Figure 3a
can be noted. In the zone where higher TAC values are located
a higher amount of butanol is produced if the dilution factor is
increased; however, if this happens the amount of enzyme
decreases, both behaviors producing a higher TAC. A contrary
behavior is obtained in the zone where the smallest TAC values
are.
On the other hand, in the middle zone of the Pareto front

both objective functions converge. This zone is considered
more feasible since the lowest values for both objective
functions are obtained. The average amount of butanol
produced is 9.3 g L−1 approximately with a TAC value of
0.282 $/kg-ABE.
Another relevant index in the fermentation process is the

productivity, which must be optimized for increasing the
performance of the process. After this biobjective optimization
process it was possible to obtain the Pareto front in Figure 3b;
in this Pareto front the productivity was evaluated bearing in
mind the total annual cost. It is possible to observe a similar
behavior than in Figure 3a, in this case when productivity
increases the TAC value increases as well. This behavior is
resumed in the convergence zones showed in Table 4.

Table 1. Decision Variables and Their Ranges Used in the
Multiobjective Optimization of a Bioreactor

decision variable
range used in
optimization

variable
category

dilution rate (D) h−1 0.001 ≤ D ≥ 0.1 continuous
enzymes Ez (g-enzyme/kg-
butanol)

40 ≤ Ez ≥ 180 continuous

solvent (Ex) kg-extractant/kg-
butanol

40 ≤ Ex ≥ 80 continuous

concentration cellulose CC g L−1 80 ≤ Cc ≥ 140 continuous
concentration xylose CX g L−1 50 ≤ CX ≥ 100 continuous
concentration lignin CL g L−1 35 ≤ CL ≥ 90 continuous
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Table 3 shows several values obtained through the
biobjective optimization process. In brief, if the sugar feed
stream increases, the sugar concentration in the reactor
increases, but the sugar conversion decreases. On the other
hand if the rate conversion increases, the productivity increases
as well; however, those two measurements are not able to reach

high values because of substrate inhibition. In this way a feasible
zone exists, where the best values of those two measurements
are located. This zone can be found through a multiobjective
optimization process.
Figure 3c shows the Pareto front obtained when sugar

conversion is evaluated with the total annual cost. In this Pareto

Figure 3. Pareto-optimal fronts obtained of biobjective optimization of TAC vs bioindicators.

Table 2. Results of the Biobjective Optimization Evaluation of TAC vs Concentration of Butanol at Representative Points of the
Zones

f1 f4 D Ez Ex Cc Cx Cl

zone 1 0.26844 7.736 0.013015 195.592 42.603 90.22 89.96 45.69
0.26830 7.565 0.012578 197.938 41.025 90.35 89.80 73.19

zone 2 0.28262 8.988 0.017524 193.249 40.370 90.56 89.97 46.11
0.28244 8.983 0.017482 198.704 40.281 90.85 89.96 46.68

zone 3 0.33271 9.298 0.020445 184.685 40.256 121.71 88.73 45.73
0.33583 9.303 0.020623 178.941 40.204 122.27 88.63 45.19

Table 3. Results of the Biobjective Optimization Evaluating TAC vs Conversion at Representative Points of the Zones

f1 f 3 D Ez Ex Cc Cx Cl

zone 1 0.2686 0.3375 0.012205 195.836 41.30 90.39 89.79 75.32
0.2684 0.3369 0.012913 191.788 43.27 90.81 89.99 70.33

zone 2 0.2821 0.3507 0.010010 149.568 55.77 128.38 89.88 74.03
0.2819 0.3501 0.010011 160.037 56.34 129.54 89.75 77.80

zone 3 0.3168 0.3603 0.010047 80.231 78.49 119.64 78.02 79.75
0.3204 0.360 0.010025 80.234 78.12 119.84 74.27 56.81
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front, the decision variable which produces a great impact in
conversion is the dilution rate. Note that is possible to obtain
butanol with low prices; however, the conversion decreases
notably. Also, it is observed that work with high dilution rates
implies a higher amount of enzyme which implies more butanol
produced; however, if there is more butanol the amount of
extractant needed increases as well, increasing energy require-
ments in the separation unit.
On the other hand, when the dilution rate is set to increase,

the butanol conversion implies that solvent requirements would
increase in the separation unit, which obviously requires energy
to separate the ABE mixture. In other words, work under the
low dilution rate values produces higher residence time, which
implies the addition of a lower amount of enzyme because the
sugar takes more time to be fermented, subsequently more
extractant and energy are required in the separation unit.

Finally, Figure 3d shows the behavior when yield and butanol
concentration are evaluated. In this test it was possible to
observe how difficult it is to obtain high butanol concentrations
with high yield as well. Therefore, the operative zone must be
selected according to the operative necessity, just as in all the
cases already studied.

5.2. Multiobjective Optimization Results. In all results
presented so far, it is possible to notice the role of each target
against others during this optimization process. It was feasible
to minimize the TAC when it is evaluated with several targets
such as productivity, butanol concentration, and sugar
conversion. However, since only two objective functions are
involved in the optimization process, it is not possible to know
the behavior of the other targets, which probably would
generate a huge impact and several alternative scenarios. In this
manner, a multiobjective optimization is mandatory since this

Table 4. Results of Optimization Biobjective of TAC vs Productivity at Representative Points of the Zones

f1 f 2 D Ez Ex Cc Cx Cl

zone 1 0.26860 0.865 0.01457 198.436 50.66 90.85 89.98 76.09
0.26876 0.808 0.01369 190.450 46.43 90.77 89.60 72.29

zone 2 0.29194 1.570 0.03055 191.285 79.81 101.14 89.88 78.91
0.29142 1.567 0.03064 188.726 79.91 98.95 89.81 78.27

zone 3 0.35640 1.773 0.03853 139.749 79.97 129.89 89.24 66.35
0.34982 1.770 0.03781 139.707 79.90 128.56 89.24 79.84

Figure 4. Pareto-optimal front obtained at 500 generations for the simultaneous minimization of TAC, maximization of butanol concentration, and
productivity.
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process would let us know a more complete and more
promissory scenario, where any targets would be compromised.
Further, it is clear that under the light of a multiobjective

optimization process it is possible to find a zone of several
states where it is totally feasible to operate the bioreactor
without compromise to economic or productivity indexes.
Figure 4 shows the Pareto fronts after optimization. In those

Pareto fronts all aforementioned objective functions are
evaluated. Besides, note in Figure 4 some highlighted points
that represent process designs with better values in all objective
functions. The values of those states are in Table 5. It is clear
that under a multiobjective optimization we know an operative
zone where all those conflicting objective functions might reach
a maximum or minimum without affecting other targets (see
Figure 4). For example, probably a good operative point of the
process could be near 0.2786 $/kg-ABE, with a productivity of
0.81 g-ABE L−1 h−1 and a concentration of 7.41g L−1. Those
values of this highlighted point are shown in Table 8.

The results reported in this work represent a significant
improvement in comparison with those presented by Mariano
et al.43 who reported an ABE concentration at reactor of 5.6−
10 g/L and yields between 0.29 and 0.43 g/g. Rohani et al.26

reported ABE concentrations at fermentor between 7.9 and
13.2 g/L. Diaz et al.44 used a fermenter with vacuum

evaporation, producing ABE productivities of 1.8 g/L/h, yield
of 0.33 g/g, and a TAC of 0.57 US$/kg-ABE.
Moreover, note that at the end of this proposed

fermentation, the obtained effluent could be separated and
purified with several alternatives already reported in the
literature.27,28 However, electing any of all those scenarios
depends totally on the necessity of production. In any case, the
use of a multiobjective approach allowed us to know in a wider
view several scenarios, considering interesting economic or
productivity indexes.
As a brief summary of the interaction of our objective

functions, note that high butanol concentration involves high
performance and productivity. However, this scenario also
requires an increase in the amount of enzyme, sugar, and
extractant agent, producing a concurrent increase in the TAC
(see Figure 5 and Table 5).
With respect to the optimal feed conditions, a ratio of 1.389/

1.129/1 (cellulose/hemicellulose/lignin) must be fed to the
integrated reactor to obtain the best objective function values.
Nowadays this amount of sugars and lignin can be supplied
combining some lignocellulosic raw materials already charac-
terized such as corn fiber,45,46 corn stover,47 corn stalk,46 rice
bran,48 rice straw,49 barley straw,45 wheat straw,50−52 wheat
bran,53 switchgrass,47 and cassava bagasse.54 Furthermore, the
extractant agent must be equal to 45 kg-solvent/kg-butanol.
The optimal dilution rate is 0.01527 h−1 producing an optimal
yield of 0.3144 g-ABE/g-substrate.
Moreover, Figure 5 shows the entire behavior of some

important species involved in the bioreactor. This behavior
belongs to the best point found in the multiobjective
optimization where TAC is minimized, and productivity,
butanol concentration, and performance are maximized. It is
possible to observe that all species reach a state where their
concentration remains almost constant. Further, the necessary
time to reach this state might be neglected taking into
consideration the total time involved in the operation. Also, the
glucose concentration is kept at low values, avoiding substrate
inhibition. Note we set 500 h as operation time. According to
Figure 5 the equilibrium is reached before this time; however,
this operation time helps us notice that indeed we did not
obtain improved values after several hours. In Table 7 the
fermenter operative conditions are shown for the simulation of
reactor integrated with liquid−liquid extraction.
After performing this multiobjective optimization process

and comparing the results with those obtained in the
biobjective optimization, it is possible to note that when only
two objectives are involved the scenario might not be so
feasible in comparison when all targets are involved at the same
time. For example, results from the biobjective optimization
showed a scenario where it was possible to reach 9.3 g L−1 of
butanol concentration and 1.75 g-ABE L−1 h−1 of productivity,

Table 5. Results of Multiobjective Optimization

objective functions decision variables

f1 f 2 f 3 f4 D Ez Ex Cc Cx Cl

0.2760 0.766 0.3171 7.24 0.01527 199.03 45.15 80.58 79.92 70.75
0.2775 0.687 0.3169 7.46 0.01348 195.54 38.85 82.69 79.11 63.17
0.2772 0.770 0.3083 7.38 0.01527 199.03 45.15 83.03 79.74 54.03
0.2788 0.866 0.3191 7.13 0.01771 168.63 52.91 80.67 79.49 65.59
0.2782 0.792 0.3070 7.60 0.01598 176.71 43.86 82.85 79.96 62.34
0.2776 0.710 0.3191 6.84 0.01359 191.90 45.43 82.43 79.77 72.10
0.2782 0.818 0.3169 7.67 0.01673 199.03 45.15 83.03 79.74 55.06

Table 6. Parameters Used in Economic Evaluation

parameter value unit

low pressure steam 0.017 $/MJ
medium pressure steam 0.022 $/MJ
2-ethyl-1-hexanol 4.3 $/kg-extractant
cooling water 0.06 $/ton
electricity 0.12 $/Kwh
enzyme 1.22 $/kg-enzyme
operation time 8000 h
time of return investment (r) 3 year

Table 7. Operative Conditions at the Integrated Reactor
with Liquid−Liquid Extraction

operation conditions

temperature of the fermentation 30 °C
final fermentation time 500 h
initial glucose concentration 60 g L−1

initial biomass concentration 0.1 g L−1

maximum permissible biomass concentration 250 g L−1

volume reactor 1000 m3

reactor constraints

maximum biomass concentration in the reactor 30 g L−1

maximum butanol concentration 16 g L−1
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respectively. However, when all objective functions are
evaluated at the same time, those values were not observed
in the Pareto front, probably because one or more objective
functions could be compromised.

■ CONCLUSIONS
The reactor optimization integrating saccharification, fermenta-
tion, and liquid−liquid extraction to produce biobutanol in a
semicontinuous process was possible using a hybrid stochastic
optimization algorithm with several targets at the same time.
Considering the results facing TAC against concentration we
conclude that high concentrations are obtained only with high
TAC values. The same tendency is observed evaluating
productivity and performance against TAC. However, a
multiobjective optimization evaluating all indexes showed a
clear convergence tendency; that is, it is possible to find a
feasible operative zone without compromising one target for
another. In other words, the operative zone and operative
variables in the reactor obtained after the optimization process
consider the balance among all our objective functions in order
to improve the performance of the ABE fermentation process.
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■ NOMENCLATURE
D = Dilution rate (h−1)
X = biomass concentration (g L−1)
PB = butanol productivity (g-ABE L−1 h−1)
V = fermenter volume (m3)
MWi = molecular weight of species i (g/mmol)
CB = butanol concentration (g L−1)
Ci = concentration of species i (mmol/L)
Fn = stream volumetric flow rate (m3/h)
YABE = yield (g-ABE/g-substrate)
Ri = reaction rate g L−1 s−1

xi = molar composition in the reactor
rF = recycle rate in fermenter
En = amount of enzyme added($/kg biomass)
Ext = extractant in feed stream
Cc = concentration of cellulose
Cx = concentration of xylose
Cl = concentration of lignin
CR = reactor cost
CT = column cost
CIN = condenser cost
CIE = initial investment
CE = electricity cost
CV = steam cost
CAE = cooling water cost
CS = substrate cost
CENZ = enzyme cost
CEX = cost due to extractant lost
yk⃗ = vectors of restrictions
x ⃗k = vectors of restrictions

Table 8. Streams Results for the Optimized Solution

wt %

stream ton/h acetone butanol ethanol extractant agent

F1 102.3 0 0 0 0
F2 63.1 4.30 × 10−04 5.40 × 10−03 8.60 × 10−04 0
F3 34.727 0.429 0.146 0.089 0.697
F4 0.024 0 0 0 1
F5 24.197 0 0 1
F6 24.173 0 0 0 1
F7 10.530 0.4292 0.4815 0.0893 0
FP 91.770 4.30 × 10−04 5.40 × 10−04 8.60 × 10−04 0
FL 52.570 0 0 0

Figure 5. Concentration profiles of a reactor with simultaneous
fermentation, saccharification, and separation.
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